4.5 Article

Information Processing by Cyanobacteria During Adaptation to Environmental Phosphate Fluctuations

Journal

PLANT SIGNALING & BEHAVIOR
Volume 1, Issue 4, Pages 212-220

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/psb.1.4.3242

Keywords

adaptation; cyanobacteria; information processing; phosphate uptake; self-referential systems

Funding

  1. Austrian Science Fund [P 16237B05]

Ask authors/readers for more resources

Phosphate limited grown Anabaena variabilis has the capability of processing information about external phosphate fluctuations by means of interconnected adaptive events. Adaptive events are physiological processes that are characterized by two opposite manifestations, namely adapted states and adaptive operation modes. In adapted states the energy-converting constituents of the uptake system operate under the prevailing external conditions in a coherent manner with least energy dissipation. Adaptive operation modes take place when adapted states are disturbed by persistent changes in phosphate supply. In this mode the outcome of former adaptations to elevated phosphate levels guides the emergence of a new adapted state. The influence of antecedent adapted states on subsequent adaptations was studied experimentally and characteristic examples for such information processing are given. The theory of self-referential systems allowed analyzing these examples. For this purpose adaptive events had to be considered as elements of a communicating network, in which, along a historic succession of alternating adapted states and adaptive operation modes, information pertaining to the self-preservation of the organism is transferred from one adaptive event to the next: the latter interprets environmental changes by means of distinct adaptive operation modes, aimed at preservation of the organism. The result of this interpretation is again leading to a coherent state that is passed on to subsequent adaptive events. A generalization of this idea to the adaptive interplay of other energy converting subsystems of the cell leads to the dynamic view of cellular information processing in which the organism recreates itself in every new experience.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available