4.1 Article

Geometrically accurate time series of archived aerial images and airborne lidar data in a forest environment

Journal

SILVA FENNICA
Volume 40, Issue 1, Pages 109-126

Publisher

FINNISH SOC FOREST SCIENCE-NATURAL RESOURCES INST FINLAND
DOI: 10.14214/sf.355

Keywords

monitoring; change detection; vegetation; canopy; photogrammetry; 3D; laser scanning; aerial triangulation; direct georeferencing

Categories

Ask authors/readers for more resources

Reconstructing three-dimensional structural changes in the forest over time is possible using archived aerial photographs and photogrammetric techniques, which have recently been introduced to a larger audience with the advent of digital photogrammetry. This paper explores the feasibility of constructing an accurate time-series of archived aerial photographs spanning 42 years using different types of geometric data and estimation methods for image orientation. A recent airborne laser scanning (lidar) data set was combined with the image block and assessed for geometric match. The results suggest that it is possible to establish the multitemporal geometry of an image block to an accuracy that is better than 0.5 m in 3D and constant over time. Even geodetic ground control points can be omitted from the estimation if the most recent images have accurate direct sensor orientation, which is becoming a standard technique in aerial photography. This greatly reduces the costs and facilitates the work. An accurate multitemporal image block combined with recent lidar scanning for the estimation of topography allows accurate monitoring and retrospective analysis of forest vegetation and management operations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available