3.9 Article

Evaluation of transfection protocols for unmodified and modified peptide nucleic acid (PNA) oligomers

Journal

OLIGONUCLEOTIDES
Volume 16, Issue 1, Pages 43-57

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/oli.2006.16.43

Keywords

-

Ask authors/readers for more resources

We have compared the efficacy of different transfection protocols reported for peptide nucleic acid (PNA) oligomers. A precise evaluation of uptake efficacy was achieved by using a positive readout assay based on the ability of a PNA oligomer to correct aberrant splicing of a recombinant luciferase gene. The study comprised transfection of PNA conjugated to acridine, adamantyl, decanoic acid, and porphyrine (acr-PNA, ada-PNA, deca-PNA, and por-RNA, respectively) and unmodified PNA partially hybridized to a DNA oligomer (PNA/DNA cotransfection). Furthermore, the effect of conjugation to a nuclear localization signal (NLS) was evaluated as part of the PNA/DNA cotransfection protocol. Transfection of the tested PNAs was systematically optimized. PNA/DNA cotransfection was found to produce the highest luciferase activity, but only after careful selection of the DNA oligonucleotide. Both a cationic lipid, Lipofectamine, and a nonliposomal cationic polymer, polyethylenimine (PEI, ExGen 500), were efficient transfection reagents for the PNA/DNA complex. However, Lipofectamine, in contrast to PEI, showed severe side effects, such as cytotoxicity. acr-PNA, ada-PNA, and por-PNA were transfectable with efficacies between 5 and 10 times lower than that seen with PNA/DNA cotransfection. Conjugation of PNA to NLS had no effect on PNA/DNA cotransfection efficacy. An important lesson from the study was the finding that because of uncontrollable biologic variations, even optimal transfection conditions differed to a certain extend from experiment to experiment in an unpredictable way.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available