4.7 Review

Aerosol flame synthesis of catalysts

Journal

ADVANCED POWDER TECHNOLOGY
Volume 17, Issue 5, Pages 457-480

Publisher

ELSEVIER
DOI: 10.1163/156855206778440525

Keywords

flame synthesis; spray pyrolysis; aerosol synthesis; flame spray pyrolysis; catalysts; nanoparticles; catalyst preparation; supported metals; perovskites; mixed oxides; photocatalysis

Ask authors/readers for more resources

A review of synthesis and performance of flame-made catalytic materials is presented. Emphasis is placed on flame technology for its dominance in aerosol manufacturing of materials of high purity with minimal liquid byproducts. Flame aerosol processes are characterized in terms of the precursor state supplied to the flame. During the last decade, a better understanding of aerosol and combustion synthesis of materials contributed to the development of one-step, dry synthesis of catalysts that, are prepared conventionally by multi-step wet-phase processes. This includes TiO2-based photocatalysts, mixed oxides (e.g. V2O5/TiO2, TiO2/SiO2, perovskites, etc.) as well as supported metals (e.g. Pt/TiO2, Pd/Al2O3, Pt/CeO2/ZrO2, Pt/Ba/Al2O3, Ag/ZnO, Cu/ZnO/Al2O3) bimetallic Pd/Pt/ Al2O3 and Au/TiO2 made by single- or multi-nozzle flames. In general, highly crystalline and non-porous nanoparticles are formed during flame synthesis, resulting in materials with high thermal stability. Unique particle structures, only available through aerosol processes, lead to improved performance in various catalytic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available