4.8 Article

Hypoxia Induces Escape from Innate Immunity in Cancer Cells via Increased Expression of ADAM10: Role of Nitric Oxide

Journal

CANCER RESEARCH
Volume 71, Issue 24, Pages 7433-7441

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-11-2104

Keywords

-

Categories

Funding

  1. Canadian Institutes of Health Research
  2. Terry Fox Foundation

Ask authors/readers for more resources

One key to malignant progression is the acquired ability of tumor cells to escape immune-mediated lysis. Whereas tumor hypoxia is known to play a causal role in cancer metastasis and resistance to therapy, the link between hypoxia and immune escape in cancer remains poorly understood. Here, we show that hypoxia induces tumor cell resistance to lysis mediated by immune effectors and that this resistance to lysis occurs via a hypoxiainducible factor-1 (HIF-1)-dependent pathway linked to increased expression of the metalloproteinase ADAM10. This enzyme is required for the hypoxia-induced shedding of MHC class I chain-related molecule A (MICA), a ligand that triggers the cytolytic action of immune effectors, from the surface of tumor cells. Indeed, our findings show a mechanistic link between hypoxia-induced accumulation of the a-subunit of HIF-1 (HIF-1 alpha), increased expression of ADAM10, and decreased surface MICA levels leading to tumor cell resistance to lysis mediated by innate immune effectors. Nitric oxide mimetic agents interfered with the hypoxia-induced accumulation of HIF1 alpha and with the hypoxia-induced upregulation of ADAM10 expression required for decreased surface MICA expression and resistance to lysis. Furthermore, treatment of tumor-bearing mice with nitroglycerin, a nitric oxide mimetic, attenuated tumor growth by a mechanism that relied upon innate immune effector cells. Together, these findings reveal a novel mechanism by which the hypoxic tumor microenvironment contributes to immune escape in cancer, lending support to potential immunotherapeutic strategies involving the use of nitric oxide mimetics. Cancer Res; 71(24); 7433-41. (C) 2011 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available