4.8 Article

Organometallic benzene-vanadium wire: A one-dimensional half-metallic ferromagnet

Journal

PHYSICAL REVIEW LETTERS
Volume 97, Issue 9, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.97.097201

Keywords

-

Ask authors/readers for more resources

Using density functional theory we perform theoretical investigations of the electronic properties of a freestanding one-dimensional organometallic vanadium-benzene wire. This system represents the limiting case of multidecker V-n(C6H6)(n+1) clusters which can be synthesized with established methods. We predict that the ground state of the wire is a 100% spin-polarized ferromagnet (half-metal). Its density of states is metallic at the Fermi energy for the minority electrons and shows a semiconductor gap for the majority electrons. We find that the half-metallic behavior is conserved up to 12% longitudinal elongation of the wire. Ab initio electron transport calculations reveal that finite size vanadium-benzene clusters coupled to ferromagnetic Ni or Co electrodes will work as nearly perfect spin filters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available