4.8 Article

Dishevelled 2 Signaling Promotes Self-Renewal and Tumorigenicity in Human Gliomas

Journal

CANCER RESEARCH
Volume 71, Issue 23, Pages 7280-7290

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-11-1531

Keywords

-

Categories

Funding

  1. NIH [GM081435]
  2. National Cancer Institute [P30-CA-08748]
  3. American Italian Cancer Foundation
  4. MSKCC Brain Tumor Center

Ask authors/readers for more resources

Glioblastoma multiforme is the most common glioma variant in adults and is highly malignant. Tumors are thought to harbor a subpopulation of stem-like cancer cells, with the bulk resembling neural progenitor-like cells that are unable to fully differentiate. Although multiple pathways are known to be involved in glioma tumorigenesis, the role of Wnt signaling has been poorly described. Here, we show that Dishevelled 2 (Dvl2), a key component of the Wnt signaling pathway, is overexpressed in human gliomas. RNA interference-mediated depletion of Dvl2 blocked proliferation and promoted the differentiation of cultured human glioma cell lines and primary, patient-derived glioma cells. In addition, Dvl2 depletion inhibited tumor formation after intracranial injection of glioblastoma cells in immunodeficient mice. Inhibition of canonical Wnt/beta-catenin signaling also blocked proliferation, but unlike Dvl2 depletion, did not induce differentiation. Finally, Wnt5a, a noncanonical Wnt ligand, was also required for glioma cell proliferation. The data therefore suggest that both canonical and noncanonical Wnt signaling pathways downstream of Dvl2 cooperate to maintain the proliferative capacity of human glioblastomas. Cancer Res; 71(23); 7280-90. (C) 2011 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available