4.6 Article

One-particle spectral function and local density of states in a phenomenological mixed-phase model for high-temperature superconductors

Journal

PHYSICAL REVIEW B
Volume 73, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.73.014509

Keywords

-

Ask authors/readers for more resources

The dynamical properties of a recently introduced phenomenological model for high-temperature superconductors are investigated. In the clean limit, it was observed that none of the homogeneous or striped states that are induced by the model at low temperatures can reproduce the recent angle-resolved photoemission results for La2-xSrxCuO4 [Yoshida , Phys. Rev. Lett. 91, 027001 (2003)], which show a signal with two branches in the underdoped regime. On the other hand, upon including quenched disorder in the model and breaking the homogeneous state into patches that are locally either superconducting or antiferromagnetic, the two-branch spectra can be reproduced. In this picture, the nodal regions are caused by d-wave superconducting clusters. Studying the density of states (DOS), a pseudogap is observed, caused by the mixture of the gapped antiferromagnetic state and a d-wave superconductor. The local DOS can be interpreted using a mixed-phase picture, similar to what is observed in tunneling experiments. It is concluded that a simple phenomenological model for cuprates can capture several of the one-particle features observed in the underdoped regime of these materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available