4.7 Article

Functional effects of mutations at F35 in the NH2-terminus of Kir6.2 (KCNJ11), causing neonatal diabetes, and response to sulfonylurea therapy

Journal

DIABETES
Volume 55, Issue 6, Pages 1731-1737

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/db05-1420

Keywords

-

Funding

  1. Wellcome Trust Funding Source: Medline

Ask authors/readers for more resources

Heterozygous mutations in the human Kir6.2 gene (KCNJ11), the pore-forming subunit of the ATP-sensitive K+ channel (K-ATP channel), cause neonatal diabetes. To date, all mutations increase whole-cell K-ATP channel currents by reducing channel inhibition by Mg-ATP. Here, we provide functional characterization of two mutations (F35L and F35V) at residue F35 of Kir6.2, which lies within the NH2-terminus. We further show that the F35V patient can be successfully transferred from insulin to sulfonylurea therapy. The patient has been off insulin for 24 months and shows improved metabolic control (mean HbA(1c) 7.58 before and 6.18% after sulfonylurea treatment; P < 0.007). Wild-type and mutant Kir6.2 were heterologously coexpressed with SUR1 in Xenopus oocytes. Whole-cell K-ATP channel currents through homomeric and heterozygous F35V and F35L channels were increased due to a reduced sensitivity to inhibition by Mg-ATP. The mutation also increased the open probability (PO) of homomeric F35 mutant channels in the absence of ATP. These effects on P, and ATP sensitivity were abolished in the absence of SUR1 Our results suggest that mutations at F35 cause permanent neonatal diabetes by affecting K-ATP channel gating and thereby, indirectly, ATP inhibition. Heterozygous F35V channels were markedly inhibited by the sulfonylurea tolbutamide, accounting for the efficacy of sulfonylurea therapy in the patient.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available