4.7 Article

A deep XMM-Newton observation of the ultraluminous X-ray source Holmberg II X-1: the case against a 1000-M-circle dot black hole

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 365, Issue 1, Pages 191-198

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2005.09702.x

Keywords

black hole physics; X-rays : binaries; X-rays : galaxies

Funding

  1. STFC [PP/D000955/1] Funding Source: UKRI
  2. Science and Technology Facilities Council [PP/D000955/1] Funding Source: researchfish

Ask authors/readers for more resources

We present results from a 112-ks long look by XMM-Newton at the ultraluminous X-ray source (ULX) Holmberg II X-1 (Ho II X-1), long thought to be the one of best candidates for the missing class of intermediate-mass black holes (IMBHs). Our data comprises the first high-quality XMM-Newton/RGS (reflection grating spectrometer) spectrum of an ULX, and an XMM-Newton/EPIC (European Photo Imaging Camera) spectrum with unprecedented signal-to-noise ratio. A detailed timing analysis shows that any variability on time-scales of minutes to hours is very weak (less than a few per cent fractional rms), though larger amplitude variations on much shorter time-scales could be hidden by photon counting statistics. This result suggests that if Ho II X-1 harbours an IMBH, then we are observing this source in a highly unusual and atypical state when compared with the known variability behaviour of other accreting systems of large mass. Moreover, unlike galactic X-ray binaries, our spectral analysis indicates the possible presence of an optically thick low-temperature corona. Taken together our timing and spectral analysis suggests that the compact companion is most likely a high-luminosity analogue of black hole binary systems similar to GRS 1915+105, the galactic microquasar, harbouring a compact object of mass no greater than 100 M-..

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available