4.6 Article

Evolution of pairwise entanglement in a coupled n-body system

Journal

PHYSICAL REVIEW A
Volume 73, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.73.012305

Keywords

-

Ask authors/readers for more resources

We study the exact evolution of two noninteracting qubits, initially in a Bell state, in the presence of an environment, modeled by a kicked Ising spin chain. Dynamics of this model range from integrable to chaotic and we can handle numerics for a large number of qubits. We find that the entanglement (as measured by concurrence) of the two qubits has a close relation to the purity of the pair, and closely follows an analytic relation derived for Werner states. As a collateral result we find that an integrable environment causes quadratic decay of concurrence as well as of purity, while a chaotic environment causes linear decay. Both quantities display recurrences in an integrable environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available