4.5 Article

Graded response to GABA by native extrasynaptic GABA(A) receptors

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 97, Issue 5, Pages 1349-1356

Publisher

BLACKWELL PUBLISHING
DOI: 10.1111/j.1471-4159.2006.03811.x

Keywords

GABA channels; hippocampus; patch-clamp; single-channel current; tonic inhibition

Ask authors/readers for more resources

GABA is the main inhibitory neurotransmitter in the mammalian CNS. GABA in the brain is commonly associated with a fast, point-to-point form of signalling called synaptic transmission (phasic inhibition), but there is growing evidence that GABA participates in another, slower and more diffuse form of signalling often referred to as tonic inhibition. Unresolved questions regarding tonic neuronal inhibition concern activation and functional properties of extrasynaptic GABA(A) receptors (GABARex) present on neurones. Extrasynaptic receptors are exposed to submicromolar GABA concentrations and may modulate the overall excitability of neurones and neuronal networks. Here, we examined GABA-activated single-channel currents in dentate gyrus granule neurones in rat hippocampal slices. We activated three types (I, II, III) of GABARex channels by nanomolar GABA concentrations (EC50 I: 27 +/- 12; II: 4 +/- 3; III: 43 +/- 19 nM). The channels opened after a delay and the single-channel conductance was graded (gamma(max) I: 61 +/- 3; II: 85 +/- 8, III: 40 +/- 3 pS). The channels were differentially modulated by 1 mu M diazepam, 200 nM zolpidem, 1 mu M flumazenil and 50 nM THDOC (3 alpha, 21-dihydroxy-5 alpha-pregnan-20-one), consistent with the following minimal subunit composition of GABARex I alpha(1)beta gamma(2), GABARex II alpha(4)beta gamma(2) and GABARex III alpha beta delta channels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available