4.8 Article

Displacement of a DNA binding protein by Dda helicase

Journal

NUCLEIC ACIDS RESEARCH
Volume 34, Issue 10, Pages 3020-3029

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkl369

Keywords

-

Funding

  1. NIGMS NIH HHS [GM059400, R01 GM059400] Funding Source: Medline
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM059400] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Bacteriophage T4 Dda helicase has recently been shown to be active as a monomer for unwinding of short duplex oligonucleotides and for displacing streptavidin from 3'-blotinylated oligonucleotides. However, its activity for streptavidin displacement and DNA unwinding has been shown to increase as the number of Dda molecules bound to the substrate molecule increases. A substrate was designed to address the ability of Dda to displace DNA binding proteins. A DNA binding site for the Escherichia coli trp repressor was introduced into an oligonucleotide substrate for Dda helicase containing single-stranded overhang. Here we show that a Dda monomer is insufficient to displace the E.coli trp repressor from dsDNA under single turnover conditions, although the substrate is unwound and the repressor displaced when the single-stranded overhang is long enough to accommodate two Dda molecules. The quantity of product formed increases when the substrate is able to accommodate more than two Dda molecules. These results indicate that multiple Dda molecules act to displace DNA binding proteins in a manner that correlates with the DNA unwinding activity and streptavidin displacement activity. We suggest a cooperative inchworm model to describe the activities of Dda helicase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available