4.8 Article

Vascular Endothelial Growth Factor Receptor-1 Signaling Promotes Mobilization of Macrophage Lineage Cells from Bone Marrow and Stimulates Solid Tumor Growth

Journal

CANCER RESEARCH
Volume 70, Issue 20, Pages 8211-8221

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-10-0202

Keywords

-

Categories

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [17014020]
  2. Japan Society for Promotion of Science

Ask authors/readers for more resources

Vascular endothelial growth factor and its receptors, including Flt-1 and Flk-1, are involved in angiogenesis under physiologic and pathologic conditions. Recently, Flt-1-expressing cells were reported to contribute to the intracranial growth of glioma cells. However, the role of Flt-1 signaling in solid tumor growth in s.c. tissue has not been elucidated. To investigate how Flt-1 signaling is involved in the proliferation of solid tumors, we implanted tumor cells into wild-type (Wt) and Flt-1 tyrosine kinase (TK)-deficient (Flt-1 TK(-/-)) mice. Growth of HSML and B16 but not Lewis lung carcinoma cell in s.c. tissue was significantly decreased in Flt-1 TK(-/-) mice. Angiogenesis in HSML and B16 tumors was remarkably reduced in Flt-1 TK(-/-) mice. Moreover, the infiltration of macrophage lineage cells into HSML and B16 tumors was clearly suppressed in Flt-1 TK(-/-) mice. Pericyte marker(+) cells were also reduced in Flt-1 TK(-/-) mice. However, in the border area of tumor, angiogenesis and the infiltration of macrophage lineage cell were basically similar between Wt and Flt-1 TK(-/-) mice. In bone marrow (BM) transplantation experiments, tumor angiogenesis, infiltration of macrophage lineage cells, and tumor growth were significantly suppressed in Wt/Flt-1 TK(-/-) mice implanted with Flt-1 TK(-/-) BM cells compared with those implanted with Wt BM cells. We conclude that Flt-1 signaling is involved in the function of BM-derived cell, such as the migration of macrophages into cancerous tissues, and significantly contributes to angiogenesis and tumor progression. Cancer Res; 70(20); 8211-21. (C) 2010 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available