4.8 Article

Tuberous Sclerosis Complex 1: An Epithelial Tumor Suppressor Essential to Prevent Spontaneous Prostate Cancer in Aged Mice

Journal

CANCER RESEARCH
Volume 70, Issue 21, Pages 8937-8947

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-10-1646

Keywords

-

Categories

Funding

  1. NIH [R01 CA10101, R01 CA120436]
  2. National Cancer Institute [1P01CA120964-01A1]
  3. Beatrice Roe fund for Urological Research

Ask authors/readers for more resources

The phosphoinositide 3-kinase (PI3K) pathway regulates mammalian cell growth, survival, and motility and plays a major pathogenetic role in human prostate cancer (PCa). However, the oncogenic contributions downstream of the PI3K pathway made by mammalian target of rapamycin complex 1 (mTORC1)-mediated cell growth signal transduction in PCa have yet to be elucidated in detail. Here, we engineered constitutive mTORC1 activation in prostate epithelium by a conditional genetic deletion of tuberous sclerosis complex 1 (Tsc1), a potent negative regulator of mTORC1 signaling. Epithelial inactivation was not immediately tumorigenic, but Tsc1-deficient mice developed prostatic intraepithelial neoplasia (mPIN) in lateral and anterior prostates by 6 months of age, with increasing disease penetrance over time. Lateral prostate lesions in 16- to 22-month-old mutant mice progressed to two types of more advanced lesions, adenomatous gland forming lesion (Type 1) and atypical glands embedded in massively expanded reactive stroma (Type 2). Both Type 1 and Type 2 lesions contained multiple foci of microinvasive carcinoma. Epithelial neoplastic and atypical stromal lesions persisted despite 4 weeks of RAD001 chemotherapy. Rapalogue resistance was not due to AKT or extracellular signal-regulated kinase 1/2 activation. Expression of the homeobox gene Nkx3.1 was lost in Tsc1-deficient mPIN, and it cooperated with TSC1 loss in mPIN initiation in doubly mutant Tsc1: Nkx3.1 prostatic epithelial knockout mice. Thus, TSC1 inactivation distal to PI3K and AKT activation is sufficient to activate a molecular signaling cascade producing prostatic neoplasia and focal carcinogenesis. Cancer Res; 70(21); 8937-47. (C) 2010 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available