4.8 Article

Cadherin-11 Increases Migration and Invasion of Prostate Cancer Cells and Enhances their Interaction with Osteoblasts

Journal

CANCER RESEARCH
Volume 70, Issue 11, Pages 4580-4589

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-09-3016

Keywords

-

Categories

Funding

  1. NIH [CA111479, P50-CA140388, DK53176]
  2. U.S. Department of Defense [PC093132]
  3. Prostate Cancer Foundation

Ask authors/readers for more resources

Cell adhesion molecules have been implicated in the colonization of cancer cells to distant organs. Prostate cancer (PCa) has a propensity to metastasize to bone, and cadherin-11, which is an osteoblast cadherin aberrantly expressed in PCa cells derived from bone metastases, has been shown to play a role in the metastasis of PCa cells to bone. However, the mechanism by which cadherin-11 is involved in this process is not known. Here, we show that expression of cadherin-11 in cadherin-11-negative C4-2B4 cells increases their spreading and intercalation into an osteoblast layer and also stimulates C4-2B4 cell migration and invasiveness. The downregulation of cadherin-11 in cadherin-11-expressing metastatic PC3 cells decreases cell motility and invasiveness. Further, both the juxtamembrane (JMD) and beta-catenin binding domains (CBS) in the cytoplasmic tail of cadherin-11 are required for cell migration and invasion, but not spreading. Gene array analyses showed that several invasion-related genes, including MMP-7 and MMP-15, are upregulated in cadherin-11-expressing, but not in cad11-Delta JMD-expressing or cad11-Delta CBS-expressing, C4-2B4 cells. These observations suggest that cadherin-11 not only provides a physical link between PCa cells and osteoblasts but also increases PCa cell motility and invasiveness that may facilitate the metastatic colonization of PCa cells in bone. Cancer Res; 70(11); 4580-9. (c) 2010 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available