4.5 Article

Stearoyl-coenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 26, Issue 18, Pages 6786-6798

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00077-06

Keywords

-

Funding

  1. NIDDK NIH HHS [R01 DK 16238 8] Funding Source: Medline

Ask authors/readers for more resources

Stearoyl-coenzyme A desaturase (SCD) is the rate-limiting enzyme necessary for the biosynthesis of mono-unsaturated fatty acids. In this study, we investigated the regulation of mouse SCD1 by liver X receptor (LXR) and its role in plasma lipoprotein metabolism upon LXR activation. In vivo, the SCD1 gene remained induced upon LXR activation in the absence of sterol regulatory element-binding protein 1c (SREBP-1c), a known transcriptional regulator of SCD1. Serial deletion and point mutation analyses in reporter gene assays, as well as a gel mobility shift assay, identified an LXR response element in the mouse SCD1 promoter. In addition, SCD1 deficiency prevented the hypertriglyceridemic effect and reduced hepatic triglyceride accumulation associated with LXR activation despite induced hepatic expression of SREBP-1c protein and several SREBP1c and LXR target genes involved in lipoprotein metabolism. Unlike wild-type mice, SCD1-deficient mice failed to elevate the hepatic triglyceride monounsaturated acid (MUFA)/saturated fatty acid (SFA) ratio despite induction of the SCD2 gene. Together, these findings suggest that SCD1 plays a pivotal role in the regulation of hepatic and plasma triglyceride accumulation, possibly by modulating the MUFA-to-SFA ratio. In addition, SCD1 deficiency also increased plasma high-density lipoprotein cholesterol levels induced by LXR activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available