4.5 Article

Perinatal allopregnanolone influences prefrontal cortex structure, connectivity and behavior in adult rats

Journal

NEUROSCIENCE
Volume 138, Issue 3, Pages 809-819

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2005.12.026

Keywords

neurosteroid; development; schizophrenia; iterneuron; GABA(A)

Categories

Ask authors/readers for more resources

Cortical neurosteroid levels vary dramatically across development; during the second week of life elevated levels of allopregnanolone are associated with decreased GABA(A) receptor function. Since GABA(A) receptor modulation plays a role in proliferative regulation in developing neocortex, it is possible that endogenous neurosteroids such as allopregnanolone, acting through GABA(A) receptors, modulate cortical development. We augmented normally low levels with exogenous administration of allopregnanolone (10 mg/kg) during the first week of rodent life. The localization of parvalbumin-labeled cells was markedly altered; the ratio of cell number in the deep (layers V-VI) vs. superficial (layers I-III) layers of adult prefrontal cortex increased two-fold in rats administered allopregnanolone on postnatal day 1 or 5. The mechanism underlying these anatomical changes likely involves GABA(A) receptors because similar changes in interneuron placement were observed after neonatal benzodiazepine administration. Measures of mature cortical function were also altered after neonatal neurosteroid administration, including [H-3]MK-801 binding, prepulse inhibition and amphetamine-induced locomotor activity. Moreover, neonatal allopregnanolone administration increases the number of parvalbumin-expressing neurons in medial dorsal nucleus of the thalamus while the total neuron number is decreased. These findings suggest that connectivity between the medial dorsal nucleus of the thalamus and prefrontal cortex is likely altered by neonatal neurosteroid administration and may result in a disinhibited frontal cortex. Disinhibition in the prefrontal cortex is associated with behavioral changes relevant to human psychosis and developmental disorders. If neurosteroids play a role in normal development of prefrontal/medial dorsal patency as suggested by these studies, then alterations in neurosteroid levels may contribute to abnormal neurodevelopment. (C) 2006 Published by Elsevier Ltd on behalf of IBRO.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available