4.5 Article

Evidence for hierarchical error processing in the human brain

Journal

NEUROSCIENCE
Volume 137, Issue 1, Pages 13-17

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2005.10.064

Keywords

learning; reinforcement learning; ERN; ERP; motor control; anterior cingulate cortex

Categories

Ask authors/readers for more resources

Human goal-directed behavior depends on multiple neural systems that monitor and correct for different types of errors. For example, tracking errors in continuous motor tasks appear to be processed by a system involving posterior parietal cortex, whereas errors in speeded response and trial-and-error learning tasks appear to be processed by a system involving frontal-medial cortex. To date, it is unknown whether there is a functional relationship between the posterior and frontal error systems. We recorded the event-related brain potential from participants engaged in a tracking task to investigate the role of the frontal system in continuous motor control. Our results demonstrate that tracking errors elicit temporally distinct error-related event-related brain potentials over frontal and posterior regions of the scalp, suggesting an interaction between the subcomponents of a hierarchically organized system for error processing. Specifically, we propose that the frontal error system assesses high-level errors (i.e. goal attainment) whereas the posterior error system is responsible for evaluating low-level errors (i.e. trajectory deviations during motor control). (c) 2005 Published by Elsevier Ltd on behalf of IBRO.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available