4.5 Article

Reduced calcium binding protein immunoreactivity induced by electroconvulsive shock indicates neuronal hyperactivity, not neuronal death or deactivation

Journal

NEUROSCIENCE
Volume 137, Issue 1, Pages 317-326

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2005.08.052

Keywords

parvalbumin; calbindin D-28K; electroconvulsive shock; rat; hippocampus

Categories

Ask authors/readers for more resources

Calcium-binding proteins (CBPs), such as parvalbumin and calbindin D-28k, are useful markers of specific neuronal types in the CNS. In recent studies, expression of CBPs may be indicative of a deactivated neuronal state, particularly epilepsy. However, it is controversial whether altered expression of CBPs in the hippocampus practically indicate neuronal activity. Therefore, the present study was performed to investigate the extent of profiles of expression of CBPs in the rat hippocampus affected by several episodes induced by electroconvulsive shock. In the present study, following electroconvulsive shock expression of CBPs were reduced in the hippocampus in a stimulus-dependent mariner, and recovered to the control level at 6 h after electroconvulsive shock. However, paired-pulse responses of the dentate gyrus were transiently impaired by electroconvulsive shock, and immediately normalized to baseline value. In addition, effects of electroconvulsive shock on expression cif CBPs and paired-pulse responses were prevented by pre-treatment of vigabatrin. These findings suggest that reduced expression of CBPs induced by seizure activity may be indicative of hyperactivity of CBP positive neurons, which is a practical consequence of the abnormal discharge, and that they may play an important role in regulating seizure activity. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available