4.5 Article

Dendritic morphogenesis of cerebellar purkinje cells through extension and retraction revealed by long-term tracking of living cells in vitro

Journal

NEUROSCIENCE
Volume 141, Issue 2, Pages 663-674

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2006.04.044

Keywords

GAD67-GFP mice; dissociated cell culture; CaMKII; glutamate; neuronal activity

Categories

Ask authors/readers for more resources

Cerebellar Purkinje cells have the most elaborate dendritic trees among the neurons in the CNS. To investigate the dynamic aspects of dendritic morphogenesis of Purkinje cells, we performed a long-term analysis of living cells in cerebellar cell cultures derived from glutamate decarboxylase 67-green fluorescent protein mice. Most Purkinje cells had several primary dendrites during the 25-day culture period. Repeated observation of green fluorescent protein-expressing Purkinje cells over a period of 10-25 days in vitro demonstrated that not only extension, but also retraction of primary dendrites occurred during this culture period. Interestingly, both extension and retraction of primary dendrites were active between 10 and 15 days in vitro, and retraction of a primary dendrite occurred concomitantly with elongation of other primary dendrites in the same cell. Analysis of the gical characteristics of the retracted primary denmorphological demonstrated that shorter and less branched primary dendrites tended to retract. Furthermore, treatment with an inhibitor of calcium/calmodulin-dependent protein kinase II reduced the number of primary dendrites specifically during 5-15 days in vitro, the culture period when the extension and retraction of primary dendrites occurred actively. Blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate-type glutamate receptors also reduced the number of primary dendrites (luring the same culture period, while inhibition of glutamate -transporters increased the number. These findings suggest that the final morphology of Purkinje cells is achieved not only through extension, but also through retraction of their dendrites, and that calcium/calmodulin-dependent protein kinase II and neuronal activity are involved in this dendritic morphogenesis. (c) 2006 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available