4.5 Article

Aromatase expression in the human temporal cortex

Journal

NEUROSCIENCE
Volume 138, Issue 2, Pages 389-401

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2005.11.054

Keywords

astrocytes; calcium-binding proteins; estradiol; interneurons; pyramidal neurons

Categories

Ask authors/readers for more resources

The expression of the human cyp19 gene, encoding P450 aromatase, the key enzyme for estrogen biosynthesis, involves alternative splicing of multiple forms of exon I regulated by different promoters. Aromatase expression has been detected in the human cerebral cortex, although the precise cellular distribution and promoter regulation are not fully characterized. We examined the variants of exon I of cyp19 by PCR analysis and the cellular distribution of the enzyme using immunohistochemistry in the human temporal cortex. We detected four different variants of exon 1, suggesting a complex regulation of cyp19 in the cerebral cortex. In addition, the enzyme was localized mainly in a large subpopulation of pyramidal neurons and in a subpopulation of astrocytes. However, the majority of GABAergic interneurons identified by their expression of the calcium-binding proteins calbindin, calretinin and parvalbumin, did not display aromatase immunoreactivity. The broad range of potential modulators of the cyp19 gene in the cortex and the widespread expression of the protein in specific neuronal and glial subpopulations suggest that local estrogen formation may play an important role in human cortical function. (c) 2005 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available