4.6 Article

Accuracy and limitations of second-order many-body perturbation theory for predicting vertical detachment energies of solvated-electron clusters

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 8, Issue 1, Pages 68-78

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b513098k

Keywords

-

Ask authors/readers for more resources

Vertical electron detachment energies (VDEs) are calculated for a variety of (H2O)(n)(-) and (HF)(n)(-) isomers, using different electronic structure methodologies but focusing in particular on a comparison between second-order Moller-Plesset perturbation theory (MP2) and coupled-cluster theory with noniterative triples, CCSD(T). For the surface-bound electrons that characterize small (H2O)(n)(-) clusters (n <= 7), the correlation energy associated with the unpaired electron grows linearly as a function of the VDE but is unrelated to the number of monomers, n. In every example considered here, including strongly-bound cavity'' isomers of (H2O)(24)(-), the correlation energy associated with the unpaired electron is significantly smaller than that associated with typical valence electrons. As a result, the error in the MP2 detachment energy, as a fraction of the CCSD(T) value, approaches a limit of about -7% for (H2O)(n)(-) clusters with VDEs larger than about 0.4 eV. CCSD( T) detachment energies are bounded from below by MP2 values and from above by VDEs calculated using second-order many-body perturbation theory with molecular orbitals obtained from density functional theory. For a variety of both strongly- and weakly-bound isomers of (H2O)(20)(-) and (H2O)(24)(-), including both surface states and cavity states, these bounds afford typical error bars of +/- 0.1 eV. We have found only one case where the Hartree-Fock and density functional orbitals differ qualitatively; in this case the aforementioned bounds lie 0.4 eV apart, and second-order perturbation theory may not be reliable.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available