4.6 Article

A fast correlated electronic structure method for computing interaction energies of large van der Waals complexes applied to the fullerene-porphyrin dimer

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 8, Issue 24, Pages 2831-2840

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b602438f

Keywords

-

Ask authors/readers for more resources

A new implementation of the scaled opposite spin Moller-Plesset (SOS-MP2) method is briefly described, which exploits the locality and sparsity of expansion coefficients and as a result has computational costs that increase approximately quadratically with molecular size. The performance of SOS-MP2 for describing stacked pi-complexes is carefully investigated using the benzene, ethylene, uracil, and naphthalene dimers as model systems. It is demonstrated that counterpoise-corrected SOS-MP2 results, extrapolated towards the complete basis set (CBS) limit using a two-point extrapolation scheme, can yield association energies that are reasonably close to the best available numbers, when the single scale factor is chosen as 1.55 for extrapolating results at the cc-pVDZ and cc-pVTZ levels. This methodology yields an interaction energy for the fullerene-tetraphenylporphyrin dimer of -31.47 kcal mol(-1) while Hartree-Fock (HF) with the cc-pVTZ basis finds the dimer at the same geometry is unbound by +10.83 kcal mol(-1). This implies that the net binding is a result of substantial correlation effects, presumably long-range London dispersions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available