4.8 Article

Reciprocating power generation in a chemically driven synthetic muscle

Journal

NANO LETTERS
Volume 6, Issue 1, Pages 73-77

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl0520617

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council [GR/S47496/01] Funding Source: researchfish

Ask authors/readers for more resources

A scalable synthetic muscle has been constructed that transducts nanoscale molecular shape changes into macroscopic motion. The working material, which deforms affinely in response to a pH stimulus, is a self-assembled block copolymer comprising nanoscopic hydrophobic domains in a weak polyacid matrix. A device has been assembled where the muscle does work on a cantilever and the force generated has been measured. When coupled to a chemical oscillator this provides a free running chemical motor that generates a peak power of 20 mW kg(-1) by the serial addition of 10 nm shape changes that scales over 5 orders of magnitude. It is the nanostructured nature of the gel that gives rise to the affine deformation and results in a robust working material for the construction of scalable muscle devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available