4.8 Article

Characterization of non-neuronal elements within fibronectin mats implanted into the damaged adult rat spinal cord

Journal

BIOMATERIALS
Volume 27, Issue 3, Pages 485-496

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2005.06.033

Keywords

fibronectin; nerve tissue engineering; laminin; macrophage

Funding

  1. Wellcome Trust Funding Source: Medline

Ask authors/readers for more resources

Previous studies have shown that mats made from fibronectin (FN) integrate well into spinal cord lesion sites and support extensive axonal growth. Using immunohistochemistry, we have investigated the non-neuronal factors that contribute to these properties. Extensive vascularization was observed in FN mats by 1 week along with heavy inacrophage infiltration by 3 days post-implantation. By 1 week post-implantation, laminin tubules had formed and were associated with axons and p75 immunoreactive Schwann cells. By 4 weeks post-implantation, most axons were associated with Schwarm cell derived myelin. Few oligodendrocytes were present within the mat, even with an increase in the number of oligodendrocyte precursors around the implant site by 7 days post-implantation. Astrocyte proliferation also occurred in the intact tissue, with a prominent glial scar forming around the implant within 4 weeks. However, by 2 months post-implantation astrocytes were present in the FN implant site and were intermingled with the axons. Axonal ingrowth and integration of the FN mats is probably due to the ability of FN mats to support and organize infiltration of Schwarm cells and deposition of laminin. At later time points, myelinated axons remain in the implant site, even after other elements (e.g. macrophages and laminin) have disappeared. Both of these properties are likely to be important in the design of biomaterial bridges for CNS regeneration. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available