4.6 Article

Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 570, Issue 1, Pages 97-111

Publisher

BLACKWELL PUBLISHING
DOI: 10.1113/jphysiol.2005.098947

Keywords

-

Ask authors/readers for more resources

Calcium regulates numerous processes in the brain. How one signal can coordinate so many diverse actions, even within the same neurone, is the subject of intense investigation. Here we have used two-photon calcium imaging to determine the mechanism that enables calcium to selectively and appropriately induce different forms of long-term potentiation (LTP) in rat hippocampus. Short-lasting LTP (LTP 1) required activation of ryanodine receptors (RyRs), which selectively increased calcium in synaptic spines. LTP of intermediate duration (LTP 2) was dependent on activation of inositol 1,4,5-trisphosphate (IP3) receptors (IP(3)Rs) and subsequent calcium release specifically in dendrites. Long-lasting LTP (LTP 3) was selectively dependent on L-type voltage-dependent calcium channels (L-VDCCs), which generated somatic calcium influx. Activation of NMDA receptors was necessary, but not sufficient, for the generation of appropriate calcium signals in spines and dendrites, and the induction of LTP 1 and LTP 2. These results suggest that the selective induction of different forms of UP is achieved via spatial segregation of functionally distinct calcium signals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available