4.6 Article

Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 8, Issue 38, Pages 4398-4401

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b608478h

Keywords

-

Ask authors/readers for more resources

Two hybrid density functionals that include a second-order perturbation correction for non-local correlation effects are tested for the full G3/05 test set. Very large AO basis sets including core-polarization/correlation functions have been employed that yield for the first time results quite close to the basis set limit for this set. The B2-PLYP functional and the new mPW2-PLYP approach with a modified exchange part give by far the lowest MAD over the whole G3/05 set ever reported for a DFT method (2.5 and 2.1 kcal mol(-1), respectively). The big improvement compared to common density functionals is further demonstrated by the reduction of the maximum and minimum errors (outliers) and by much smaller errors for complicated molecular systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available