4.7 Article

Catalytic alcohol oxidation by an unsymmetrical 5-coordinate copper complex: electronic structure and mechanism

Journal

DALTON TRANSACTIONS
Volume -, Issue 1, Pages 159-167

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b512298h

Keywords

-

Ask authors/readers for more resources

Density functional theory reveals the detailed mechanism of alcohol oxidation by a model copper complex, (CuL)-L-II, L = cis-1-(3', 5'-dimethoxy-benzylideneamino)- 3,5-[2-hydroxy-(3', 5'-di-tertbutyl) benzylideneimino] cyclohexane. Despite the obvious structural and functional parallels between the title compound and the enzyme galactose oxidase, the details of the catalytic pathway are fundamentally different. In the enzyme, coordination of the substrate produces an active form containing a Cu-II centre and a tyrosyl radical, the latter being responsible for the abstraction of hydrogen from the substrate. In the model system, in marked contrast, the active form contains a CuII centre, but the ligand radical character is localised on the substrate ( alcoholate) oxygen, rather than the phenolate ligand. The result is a significantly higher barrier to hydrogen-atom abstraction compared to the enzyme itself. The origin of these significant differences is traced to the rigid nature of the pentadentate ligand, which resists changes in coordination number during the catalytic cycle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available