4.2 Article

Polysynaptic inputs to vestibular efferent neurons as revealed by viral transneuronal tracing

Journal

EXPERIMENTAL BRAIN RESEARCH
Volume 172, Issue 2, Pages 261-274

Publisher

SPRINGER
DOI: 10.1007/s00221-005-0328-z

Keywords

labyrinth; sensorimotor; transsynaptic pathways; pseudorabies; alpha-herpes

Categories

Funding

  1. NIDCD NIH HHS [DC-00385] Funding Source: Medline

Ask authors/readers for more resources

The Bartha strain of the alpha-herpes pseudorabies virus (PrV) was used as a retrograde transneuronal tracer to map synaptic inputs to the vestibular efferent neurons of the Mongolian gerbil, Meriones unguiculatus. Although previous experiments have shown that vestibular efferent neurons respond to visual motion and somatosensory stimuli, the anatomic connections mediating those responses are unknown. PrV was injected unilaterally into the horizontal semicircular canal neuroepithelium of gerbils, where it was taken up by efferent axon terminals. The virus was then retrogradely transported to efferent cell bodies, replicated, and transported into synaptic endings projecting onto the efferent cells. Thirty animals were sacrificed at approximately 5-h increments between 75 and 105 h post-infection after determining that shorter time points had no central infection. Infected cells were visualized immunohistochemically. Temporal progression of neuronal infection was used to determine the nature of primary and higher order projections to the vestibular efferent neurons. Animals sacrificed at 80-94 h post-inoculation exhibited immunostaining in the dorsal and ventral group of vestibular efferent neurons, predominately on the contralateral side. Neurons within the medial, gigantocellular, and lateral reticular formations were among the first cells infected thereafter. At 95 h, additional virus-labeled cell groups included the solitary, area postrema, pontine reticular, prepositus, dorsal raphe, tegmental, the subcoeruleus nuclei, the nucleus of Darkschewitsch, and the inferior olivary beta and ventrolateral subnuclei. Analysis beyond 95 h revealed virus-infected neurons located in the vestibulo-cerebellar and motor cortices. Paraventricular, lateral, and posterior hypothalamic cells, as well as central amygdala cells, were also labeled. Spinal cord tissue exhibited no labeling in the intermediolateral cell column, but scattered cells were found in the central cervical nucleus. The results suggest functional associations among efferent feedback regulation of labyrinthine sensory input and both behavioral and autonomic systems, and support a closed-looped vestibular feedback model with additional open-loop polysynaptic inputs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available