4.5 Article

PERK (eIF2 alpha kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis

Journal

BIOCHEMICAL JOURNAL
Volume 393, Issue -, Pages 201-209

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BJ20050374

Keywords

eukaryotic initiation factor-2 alpha (eIF2 alpha); endoplasmic reticulum (ER); mitogen associated protein kinase (MAPK); calcium homoeostasis; stress response; immediate-early (IE) genes

Funding

  1. NIDDK NIH HHS [R01DK062049, R01 DK062049] Funding Source: Medline
  2. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R01DK062049] Funding Source: NIH RePORTER

Ask authors/readers for more resources

The eIF2 alpha (eukaryotic initiation factor-2 alpha) kinase PERK (double-stranded RNA-activated protein kinase-like ER kinase) is essential for the normal function of highly secretory cells in the pancreas and skeletal system, as well as the UPR (unfolded protein response) in mammalian cells. To delineate the regulatory machinery underlying PERK-dependent stress-responses, gene profiling was employed to assess global changes in gene expression in PERK-deficient MEFs (mouse embryonic fibroblasts). Several IE (immediate-early) genes, including c-myc, c-jun, egr-1 (early growth response factor-1), and fra-1 (fos-related antigen-1), displayed PERK-dependent expression in MEFs upon disruption of calcium homoeostasis by inhibiting the ER (endoplasmic reticulum) transmembrane SERCA (sarcoplasmic/ER Ca2+-ATPase) calcium pump. Induction of c-myc and by other reagents that elicit the UPR, however, showed variable dependence upon PERK. Induction of c-myc expression by thapsigargin was shown to be linked to key signalling enzymes including PLC (phospholipase C), PI3K (phosphatidylinositol 3-kinase) and p38 MAPK (mitogen-activated protein kinase). Analysis of the phosphorylated status of major components in MAPK signalling pathways indicated that thapsigargin and DTT (dithiothreitol) but not tunicamycin could trigger the PERK-dependent activation of JNK (c-Jun N-terminal kinase) and p38 MAPK. However, activation of INK and p38 MAPK by non-ER stress stimuli including UV irradiation, anisomycin, and TNF-alpha (tumour necrosis factor-alpha) was found to be independent of PERK. PERK plays a particularly important role in mediating the global cellular response to ER stress that is elicited by the depletion of calcium from the ER. We suggest that this specificity of PERK function in the UPR is an extension of the normal physiological function of PERK to act as a calcium sensor in the ER.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available