4.5 Article

Centralspindlin regulates ECT2 and RhoA accumulation at the equatorial cortex during cytokinesis

Journal

JOURNAL OF CELL SCIENCE
Volume 119, Issue 1, Pages 104-114

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.02737

Keywords

cytokinesis; microtubules; RhoA; central spindlin; ECT2

Categories

Ask authors/readers for more resources

During determination of the cell division plane, an actomyosin contractile ring is induced at the equatorial cell cortex by signals from the mitotic apparatus and contracts to cause cleavage furrow progression. Although the small GTPase RhoA is known to regulate the progression, probably by controlling actin filament assembly and enhancing actomyosin interaction, any involvement of RhoA in division plane determination is unknown. In this study, using a trichloroacetic acid (TCA) fixation protocol we recently developed, we show that RhoA accumulates at the equatorial cortex before furrow initiation and continues to concentrate at the cleavage furrow during cytokinesis. We also demonstrate that both Rho activity and microtubule organization are required for RhoA localization and proper furrowing. Selective disruption of microtubule organization revealed that both astral and central spindle microtubules can recruit RhoA at the equatorial cortex. We find that centralspindlin and ECT2 are required for RhoA localization and furrowing. Centralspindlin is localized both to central spindle microtubules and at the tips of astral microtubules near the equatorial cortex and recruits ECT2. Positional information for division plane determination from microtubules is transmitted to the cell cortex to organize actin cytoskeleton through a mechanism involving these proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available