4.7 Article

Biodendrimer-based hydrogel scaffolds for cartilage tissue repair

Journal

BIOMACROMOLECULES
Volume 7, Issue 1, Pages 310-316

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm050663e

Keywords

-

Funding

  1. NIBIB NIH HHS [EB 02263] Funding Source: Medline
  2. NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING [R01EB002263] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Photo-crosslinkable dendritic macromolecules are attractive materials for the preparation of cartilage tissue engineering scaffolds that may be optimized for in situ formation of hydrated, mechanically stable, and wellintegrated hydrogel scaffolds supporting chondrocytes and chondrogenesis. We designed and synthesized a novel hydrogel scaffold for cartilage repair, based on a multivalent and water-soluble tri-block copolymer consisting of a poly(ethylene glycol) core and methacrylated poly(glycerol succinic acid) dendrimer terminal blocks. The terminal methacrylates allow mild and biocompatible photo-crosslinking with a visible light, facilitating in vivo filling of irregularly shaped defects with the dendrimer-based scaffold. The multivalent dendrimer constituents allow high crosslink densities that inhibit swelling after crosslinking while simultaneously introducing biodegradation sites. The mechanical properties and water content of the hydrogel can easily be tuned by changing the biodendrimer concentration. In vitro chondrocyte encapsulation studies demonstrate significant synthesis of neocartilaginous material, containing proteoglycans and type 11 collagen.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available