4.4 Review

Birth and death of cells in limb development: A mapping study

Journal

DEVELOPMENTAL DYNAMICS
Volume 235, Issue 9, Pages 2521-2537

Publisher

WILEY
DOI: 10.1002/dvdy.20916

Keywords

limb development; programmed cell death; proliferation; TUNEL; pH3; chick embryo; mouse embryo

Ask authors/readers for more resources

Cell death and cell proliferation are basic cellular processes that need to be precisely controlled during embryonic development. The developing vertebrate limb illustrates particularly well how correct morphogenesis depends on the appropriate spatial and temporal balance between cell death and cell proliferation. Precise knowledge of the patterns of cell proliferation and cell death during limb development is required to understand how their modifications may contribute to the generation of the great diversity of limb phenotypes that result from spontaneous mutations or induced genetic manipulations. We have performed a comprehensive analysis of the patterns of cell death, assayed by terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labeling (TUNEL), and cell proliferation, assayed by anti-phosphorylated histone H3 immunohistochemistry, in consecutive sections of forelimbs and hindlimbs covering an extensive period of chick and mouse limb development. Our results confirm and expand previous reports and show common and specific areas of cell death for each species. Mitotic cells were found scattered in a uniform distribution across the early limb bud, with the exception of the areas of cell death in which mitotic cells were scarce. At later stages, mitotic cells were seen more abundantly in the digital tips. The aim of the present study was to satisfy the need for organized data sets describing these processes, which will allow the side-by-side comparison between the two major model organisms of limb development, i.e., the mouse and the chick.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available