4.8 Article

Protection from Rapamycin-Induced Apoptosis by Insulin-Like Growth Factor-I Is Partially Dependent on Protein Kinase C Signaling

Journal

CANCER RESEARCH
Volume 70, Issue 5, Pages 2000-2009

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-09-3693

Keywords

-

Categories

Funding

  1. Cancer Center [CA77776, CA96696, CA23099, CA21765]
  2. American, Lebanese, Syrian Associated Charities

Ask authors/readers for more resources

Rapamycin-induced apoptosis in sarcoma cells is inhibited by insulin-like growth factor-I (IGF-I) through a signaling pathway independent of Ras-extracellular signal-regulated kinase 1/2 and Akt. IGF-I induces Bad phosphorylation (Ser(112), Ser(136), and Ser(155)) in a pathway involving phosphoinositide 3' kinase (PI3K) and protein kinase C (PKC; mu, epsilon, or theta) resulting in sequestering Bad from mitochondria and subsequently interacting with 14-3-3 gamma in the cytosol. Gene knockdown of Bad, Bid, Akt1, Akt2, PKC-mu, PKC-epsilon, or PKC-theta was achieved by transient transfection using small interfering RNAs. Results indicate that IGF-I signaling to Bad requires activation of PI3K and PKC (mu, theta, epsilon) but not mTOR, Ras-extracellular signal-regulated kinase 1/2, protein kinase A, or p90(RSK). Wortmannin blocked the phosphorylation of PKC-mu (Ser(744)/Ser(748)), suggesting that PI3K is required for the activation of PKCs. PKCs phosphorylate Bad under in vitro conditions, and the association of phosphorylated Bad with PKC-mu or PKC-epsilon, as shown by immunoprecipitation, indicated direct involvement of PKCs in Bad phosphorylation. To confirm these results, cells overexpressing pEGFP-N1, wt-Bad, or Bad with a single site mutated (Ser(112)Ala; Ser(136)Ala; Ser(155)Ala), two sites mutated (Ser(112/136)Ala; Ser(112/155)Ala; Ser(136/155)Ala), or the triple mutant were tested. IGF-I protected completely against rapamycin-induced apoptosis in cells overexpressing wt-Bad and mutants having either one or two sites of phosphorylation mutated. Knockdown of Bid using small interfering RNA showed that Bid is not required for rapamycin-induced cell death. Collectively, these data suggest that IGF-I-induced phosphorylation of Bad at multiple sites via a pathway involving PI3K and PKCs is important for protecting sarcoma cells from rapamycin-induced apoptosis. Cancer Res; 70(5); 2000-9. (C) 2010 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available