4.8 Article

Effects of Acute versus Chronic Hypoxia on DNA Damage Responses and Genomic Instability

Journal

CANCER RESEARCH
Volume 70, Issue 3, Pages 925-935

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-09-2715

Keywords

-

Categories

Funding

  1. National Institute for Health Research Biomedical Research Centre, Oxford
  2. Cancer Research UK [C6515/A9321]

Ask authors/readers for more resources

Questions exist concerning the effects of acute versus chronic hypoxic conditions on DNA replication and genomic stability that may influence tumorigenesis. Severe hypoxia causes replication arrest independent of S-phase checkpoint, DNA damage response, or transformation status. Arrests occur during both the initiation and elongation phases of DNA replication, correlated with a rapid decrease in available deoxynucleotide triphosphates. With fluctuating oxygen tensions in tumors, arrested hypoxic cells may undergo rapid reperfusion and reoxygenation that leads to reoxygenation-induced DNA damage. In cells subjected to chronic hypoxia, we found that replicative restart was inhibited along with numerous replication factors, including MCM6 and RPA, the latter of which limits the hypoxia-induced DNA damage response. In contrast, in cells where replicative restart occurred, it was accompanied by extensive reoxygenation-induced DNA damage and compromised DNA repair. We found that cells reoxygenated after acute hypoxia underwent rapid p53-dependent apoptosis. Our findings suggest that cells lacking functional p53 are more susceptible to genomic instability and potentially tumorigenesis if they experience reoxygenation after acute exposure to hypoxia. Cancer Res; 70(3); 925-35. (C)2010 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available