4.7 Article

The strawberry gene FaGAST affects plant growth through inhibition of cell elongation

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 57, Issue 10, Pages 2401-2411

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erj213

Keywords

cell elongation; cysteine-rich protein; Fragaria gibberellin; fruit ripening; fruit size

Categories

Ask authors/readers for more resources

The strawberry (Fragariaxananassa) FaGAST gene encodes a small protein with 12 cysteine residues conserved in the C-terminal region similar to a group of proteins identified in other species with diverse assigned functions such as cell division, elongation, or elongation arrest. This gene is expressed in the fruit receptacle, with two peaks during ripening at the white and the red-ripe stages, both coincident with an arrest in the growth pattern. Expression is also high in the roots but confined to the cells at the end of the elongation zone. Exogenous application of gibberellin increased the transcript level of the FaGAST gene in strawberry fruits. Ectopic expression of FaGAST in transgenic Fragaria vesca under the control of the CaMV-35S promoter caused both delayed growth of the plant and fruits with reduced size. The same growth defect was observed in Arabidopsis thaliana plants overexpressing FaGAST. In addition, the transgenic plants exhibited late flowering and low sensitivity to exogenous gibberellin. Taken together, the expression pattern, the regulation by gibberellin, and the transgenic phenotypes point to a role for FaGAST in arresting cell elongation during strawberry fruit ripening.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available