4.5 Article

Mechanical and morphological properties of human quadriceps femoris and triceps surae muscle-tendon unit in relation to aging and running

Journal

JOURNAL OF BIOMECHANICS
Volume 39, Issue 3, Pages 406-417

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2004.12.017

Keywords

tendon strain; tendon stiffness; energy storage capacity; elderly; physical activity

Ask authors/readers for more resources

The purpose of this study was to examine the effects of aging and endurance running on the mechanical and morphological properties of different muscle-tendon units (MTUs) in vivo. The investigation was conducted on 30 elderly and 19 young adult males. For the analysis of possible MTU adaptation in response to endurance running the subjects were divided into two subgroups: non-active vs. endurance-runners. All subjects performed isometric maximal voluntary plantarflexion and knee extension contractions on a dynamometer. The distal aponeurosis of the gastrocnemius medialis (GM) and vastus lateralis (VL) during plantarflexion and knee extensions and the muscle architecture of the GM and VL were visualized by ultrasonography. The maximal knee and ankle joint moment were higher for the young compared to the elderly population (p < 0.05). No identifiable differences in muscle architecture between young and elderly subjects were detected in VL and GM. Aging results in a reduced (p < 0.05) normalized stiffness of the quadriceps femoris tendon and aponeurosis, which were not identifiable for the triceps surae. In contrast, the properties of both MTUs showed no major differences between endurance-runners and the non-active group (P > 0.05). Only pennation angle at the GM were higher for the runners compared to the non-active group (p < 0.05). The present results indicate that tendon changes related to aging do not occur proportionally in different MTUs. Furthermore, it seems that the extra stress and load imposed on high-load-bearing MTUs during endurance running may not be sufficient to produce significant adaptative processes in the mechanical parameters analyzed. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available