4.8 Article

Evidence for Cancer Stem Cells in Human Endometrial Carcinoma

Journal

CANCER RESEARCH
Volume 69, Issue 21, Pages 8241-8248

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-08-4808

Keywords

-

Categories

Funding

  1. Cancer Council Victoria [491079]
  2. National Health and Medical Research Council [465121]
  3. Australian Postgraduate Award
  4. Advanced Medical Research Foundation
  5. Harvard Stem Cell Institute
  6. Victorian Government

Ask authors/readers for more resources

Emerging evidence indicates that the highly regenerative human endometrium harbors rare populations of epithelial progenitor cells. In tumors of other regenerative epithelial tissues, rare cancer stem cells (CSC) have been identified that may have originated from normal epithelial stem/progenitor cells. We hypothesized that CSC are responsible for epithelial neoplasia associated with endometrial carcinoma, the most common gynecologic malignancy in women. Stem cell characteristics of single cells isolated from endometrial carcinoma tissues from women ages 62 +/- 11.8 years (n = 34) were assessed. Twenty-five of 28 endometrial carcinoma samples contained a small population of clonogenic cells [0.24% (0-1.84%)], with no significant difference in cloning efficiency between the three grades of endometrial carcinoma or between endometrial carcinoma and normal endometrial epithelial samples. Isolated endometrial carcinoma cells transplanted under the kidney capsule of immunocompromised mice in serial dilution (2 x 10(6)-1 x 10(4) cells) generated tumors in 8 of 9 samples with morphologies similar to the parent tumors. These tumors recapitulated cytokeratin, vimentin, estrogen receptor-alpha, and progesterone receptor expression of the parent tumor, indicating that tumor-initiating cells likely differentiated into cells comprising the endometrial carcinoma tissue. Individual clones underwent serial clonal subculture 2.5 to 4 times, with a trend of increasing number of subclonings with increasing tumor grade, indicating increasing self-renewal with greater malignancy. Clonally derived endometrial carcinoma cells also expressed the self-renewal genes BMI-I, NANOG, and SOX-2. Isolated cells from primary tumors were serially transplanted 3 to 5 times in nonobese diabetic/severe combined immunodeficient mice, showing self-renewal in vivo. This evidence of cells with clonogenic, self-renewing, differentiating, and tumorigenic properties suggests that a CSC population may be responsible for production of endometrial carcinoma tumor cells. [Cancer Res 2009;69(21):8241-8]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available