4.5 Article

Bid deficiency ameliorates ischemic renal failure and delays animal death in C57BL/6 mice

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
Volume 290, Issue 1, Pages F35-F42

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00184.2005

Keywords

ischemia-reperfusion; acute renal failure; apoptosis

Ask authors/readers for more resources

Bid deficiency ameliorates ischemic renal failure and delays animal death in C57BL/6 mice. Am J Physiol Renal Physiol 290: F35-F42, 2006. First published August 16, 2005; doi:10.1152/ajprenal.00184.2005.- Tubular cell apoptosis is involved in ischemic renal failure, but the underlying mechanism is unclear. Bid, a proapoptotic Bcl-2 family protein, may regulate the intrinsic as well as the extrinsic pathway of apoptosis. In vivo, Bid is most abundantly expressed in the kidneys. However, the role played by Bid in renal pathophysiology is unknown. Our recent work demonstrated Bid activation during renal ischemia-reperfusion. The current study has determined the role of Bid in ischemic renal injury and renal failure using Bid-deficient mice. In wild-type C57BL/6 mice, Bid was proteolytically processed into active forms during renal ischemia-reperfusion, which subsequently targeted mitochondria. This was accompanied by the development of tissue damage and severe renal failure, showing serum creatinine of 3.0 mg/dl after 48 h of reperfusion. The same ischemic insult induced acute renal failure in Bid-deficient mice, which was nonetheless less severe than the wild-type, showing 1.3 mg/dl serum creatinine. In addition, Bid deficiency attenuated tubular disruption, tubular cell apoptosis, and caspase-3 activation during 48 h of reperfusion. Compared with wild-type, animal death following renal ischemia was delayed in Bid-deficient mice. Collectively, the results suggest a role for Bid in ischemic renal injury and renal failure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available