4.0 Article

Stability of cubic zirconia and of stoichiometric zirconia nanoparticles

Journal

PHYSICS OF THE SOLID STATE
Volume 48, Issue 2, Pages 363-368

Publisher

PLEIADES PUBLISHING INC
DOI: 10.1134/S1063783406020296

Keywords

-

Ask authors/readers for more resources

Using the electron density functional method, it is shown that the oxygen sublattice of cubic zirconia is unstable with respect to random displacements of oxygen atoms, which results in general instability of bulk cubic zirconia at low temperatures. A comparison of the equilibrium atomic structures and total energies of stoichiometric ZrO2 nanoparticles about 1 nm in size shows that particles with cubic symmetry are more stable than those with rhombic (close-to-tetragonal) symmetry. The electronic structure of nanoparticles exhibits an energy gap at the Fermi level; however, this gap (depending on the symmetry and size of the particle) can be much narrower than the energy gap of the bulk material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available