4.8 Article

RASSF1A Mediates p21(Cip1/Waf1)-Dependent Cell Cycle Arrest and Senescence through Modulation of the Raf-MEK-ERK Pathway and Inhibition of Akt

Journal

CANCER RESEARCH
Volume 69, Issue 5, Pages 1748-1757

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-08-1377

Keywords

-

Categories

Ask authors/readers for more resources

Promoter hypermethylation preventing expression of the RAS association domain family 1 isoform A (RASSF1A) gene product is among the most abundant epigenetic deregulations in human cancer. Restoration of RASSF1A inhibits tumor cell growth in vitro and in murine xenograft models. Rassf1a-deficient mice feature increased spontaneous and carcinogen-induced tumor formation. Mechanistically, RASSF1A affects several cellular functions, such as microtubule dynamics, migration, proliferation, and apoptosis; however, its tumor-suppressive mechanism is incompletely understood. To study the functional consequences of RASSF1A expression in human cancer cells, we made use of a doxycycline-inducible expression system and a RASSF1A-deficient lung cancer cell line. We observed that RASSF1A induces cell cycle arrest in G, phase and senescence in vitro and in tumors established in immunodeficient mice. RASSF1A-mediated growth inhibition was accompanied by the up-regulation of the cyclin-dependent kinase inhibitor p21(CiP1/Waf1) and proceeded indepently of p53, p14(Arf) and p16(Ink4a). Loss of P21(Cip1/Waf1) or coexpression of the human papilloma virus 16 oncoprotein E7 was found to override RASSF1A-induced cell cycle arrest and senescence. Conditional RASSF1A affected mitogen-activated protein kinase and protein kinase B/Akt signaling to upregulate p21(Cip1/Waf1) and to facilitate its nuclear localization. In summary, RASSF1A can mediate cell cycle arrest and senescence in human cancer cells by p53-independent regulation of p21(Cip1/Waf1). [Cancer Res 2009;69(5):1748-57]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available