4.8 Article

Multimodal Assessment of Protein Functional Deficiency Supports Pathogenicity of BRCA1 p.V1688del

Journal

CANCER RESEARCH
Volume 69, Issue 17, Pages 7030-7037

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-09-1440

Keywords

-

Categories

Funding

  1. Cure research grant [PDF 0601163]
  2. Ellison Foundation
  3. National Cancer Institute [R33-CA132073]
  4. Dana-Farber Cancer Institute

Ask authors/readers for more resources

Unequivocal discrimination between neutral variants and deleterious mutations is crucial for appropriate counseling of individuals with a BRCA1 or BRCA2 sequence change. An increasing number of variants of uncertain significance (VUS) are being identified, the unclassified biological effect of which poses clinical concerns. A multifactorial likelihood-based approach recently suggested disease causality for BRCA1 p.V1688del, a VUS recurrent in Italian breast/ovarian cancer families. Whether and how this single amino acid deletion in the BRCA1 COOH terminus (BRCT) domain affects the function of the mutant protein (Delta ValBRCA1) has not been elucidated. We undertook comprehensive functional characterization of AValBRCA1, comprising comparative structural modeling, analysis of protein stability and associations, and analysis of DNA repair function. Our model predicted BRCT domain destabilization and folding disruption caused by BRCA1 p.V1688del. Consistently, the recombinant Delta ValBRCA1 was less stable than wild-type BRCA1 and, unlike the latter, failed to associate with BRIP1, CtIP, and Rap80 and to relocalize to sites of DNA damage. Yeast two-hybrid analysis revealed a compromised interaction with FHL2 and KPNA2, which is likely responsible for improper subcellular localization of Delta ValBRCA1. In addition, we found four new breast/ovarian cancer families of Italian ancestry who carried this sequence alteration. These results provide the first evidence of the effect of BRCA1 p.V1688del on protein stability and function, supporting the view that it is a deleterious mutation. Multimodal analyses like ours could advance understanding of tumor suppression by BRCA1 and ultimately contribute to developing efficient strategies for screening and characterization of VUS. [Cancer Res 2009;69(17):7030-7]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available