4.8 Article

Combined Inhibition of MEK and Mammalian Target of Rapamycin Abolishes Phosphorylation of Cyclin-Dependent Kinase 4 in Glioblastoma Cell Lines and Prevents Their Proliferation

Journal

CANCER RESEARCH
Volume 69, Issue 11, Pages 4577-4581

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-08-3260

Keywords

-

Categories

Funding

  1. Belgian Fonds de la Recherche Scientifique-FNRS
  2. Fonds de la Recherche Scientifique Medicale
  3. Operation Televie
  4. Actions de Recherche Concertees de In Communuate Franqaise de Belgique

Ask authors/readers for more resources

The Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (mTOR) signaling pathways are aberrantly activated in many tumors, including highly proliferative glioblastomas, but how they are wired with the cell cycle remains imperfectly understood. Inhibitors of MFK/ERK and mTOR pathways are tested as anticancer agents. They are generally considered to induce a G(1) cell cycle arrest through down-regulation of D-type cyclins and up-regulation of p27(kip1). Here, we examined the effect of targeting mTOR by rapamycin and/or MEK by PD184352 in human glioblastoma cell lines. In combination, these drugs cooperatively and potently inhibited the G(1)-S transition and retinoblastoma protein phosphorylation. Their cooperation could not be explained by their partial and differential inhibitory effects on cyclin D1 or D3 but instead by their synergistic inhibition of the activating T172 phosphorylation of cyclin-dependent kinase (CDK) 4. This appeared independent of p27 and unrelated to weak modulations of the CDK-activating kinase activity. The T172 phosphorylation of CDK4 thus appears as a crucial node integrating the activity of both MEK/ERK and mTOR pathways. Combined inhibition of both pathways should be considered as a promising strategy for treatment of tumors harboring a deregulated CDK4 activity. [Cancer Res 2009; 69(11):4577-81]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available