4.4 Article

An ab initio study of the energetics for interfaces between group V transition metal carbides and bcc iron

Journal

ISIJ INTERNATIONAL
Volume 46, Issue 10, Pages 1523-1531

Publisher

IRON STEEL INST JAPAN KEIDANREN KAIKAN
DOI: 10.2355/isijinternational.46.1523

Keywords

interface energy; misfit strain energy; transition metal carbides; bcc iron; ab initio calculation

Ask authors/readers for more resources

An ab initio study was carried out on interface energies, misfit strain energies, and electron structures at coherent interfaces between bcc Fe and MCs (NaCl structure, M=V, Nb, Ta). The interface energies at relaxed interfaces Fe/VC, Fe/NbC, and Fe/TaC were -0.120, -0.169 and -0.158 J/m(2), respectively. Influence of bond energy was estimated using the discrete lattice plane/nearest neighbor broken bond (DLP/NNBB) model. It was found that the dependence of interface energy on the type of carbide was closely related to changes of the bond energies between Fe, M and C atoms before and after formation of the interfaces Fe/MC. The misfit strain energies in Fe/VC, Fe/NbC, and Fe/TaC systems were 0.086, 0.891 and 0.827 eV per 16 atoms (Fe; 8 atoms and MC; 8 atoms), respectively. The misfit strain energy became larger when difference of lattice parameters between the bulk Fe and the bulk MCs increased.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available