4.4 Article

A layered software architecture for quantum computing design tools

Journal

COMPUTER
Volume 39, Issue 1, Pages 74-+

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/MC.2006.4

Keywords

-

Ask authors/readers for more resources

Despite convincing laboratory demonstrations of quantum information processing, it remains difficult to scale because it relies on inherently noisy components. Adequate use of quantum error correction and fault tolerance theoretically should enable much better scaling, but the sheer complexity of the techniques involved limits what is achievable today. The authors propose a layered software architecture consisting of a four-phase computer-aided design flow that assists with such computations by mapping a high-level language source program representing a quantum algorithm onto a quantum device. By weighing different optimization and error-correction procedures at appropriate phases of the design flow, researchers, algorithm designers, and tool builders can trade off performance and accuracy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available