4.7 Review

Replication fork barriers: pausing for a break or stalling for time?

Journal

EMBO REPORTS
Volume 8, Issue 4, Pages 346-353

Publisher

WILEY
DOI: 10.1038/sj.embor.7400940

Keywords

checkpoint; DNA replication fork barriers; mini-chromosome maintenance helicase; recombination; replisome

Ask authors/readers for more resources

Defects in chromosome replication can lead to translocations that are thought to result from recombination events at stalled DNA replication forks. The progression of forks is controlled by an essential DNA helicase, which unwinds the parental duplex and can stall on encountering tight protein-DNA complexes. Such pause sites are hotspots for recombination and it has been proposed that stalled replisomes disassemble, leading to fork collapse. However, in both prokaryotes and eukaryotes it now seems that paused forks are surprisingly stable, so that DNA synthesis can resume without recombination if the barrier protein is removed. Recombination at stalled forks might require other events that occur after pausing, or might be dependent on features of the surrounding DNA sequence. These findings have important implications for our understanding of the regulation of genome stability in eukaryotic cells, in which pausing of forks is mediated by specific proteins that are associated with the replicative helicase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available