4.8 Article

Dysfunctional Transforming Growth Factor-β Receptor II Accelerates Prostate Tumorigenesis in the TRAMP Mouse Model

Journal

CANCER RESEARCH
Volume 69, Issue 18, Pages 7366-7374

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-09-0758

Keywords

-

Categories

Funding

  1. NIH R01 [DK5355-12]
  2. UPR Summer Research Grant in Toxicology

Ask authors/readers for more resources

The contribution of a dysfunctional transforming growth factor-beta type II receptor (TGF beta RII) to prostate cancer initiation and progression was investigated in an in vivo mouse model. Transgenic mice harboring the dominant-negative mutant TGF-beta type II receptor (DNTGF beta RII) in mouse epithelial cell were crossed with the TRAMP prostate cancer transgenic mouse to characterize the in vivo consequences of inactivated TGF-beta signaling on prostate tumor initiation and progression. Histopathologic diagnosis of prostate specimens from the TRAMP+/DNTGF beta RII double transgenic mice revealed the appearance of early malignant changes and subsequently highly aggressive prostate tumors at a younger age, compared with littermates TRAMP+/Wt TGF beta RII mice. Immunohistochemical and Western blotting analysis revealed significantly increased proliferative and apoptotic activities, as well as vascularity and macrophage infiltration that correlated with an elevated vascular endothelial growth factor and MCP-1 protein levels in prostates from TRAMP+/DNTGF beta RII+ mice. An epithelial-mesenchymal transition (EMT) effect was also detected in prostates of TRAMP+/DNTGF beta RII mice, as documented by the loss of epithelial markers (E-cadherin and beta-catenin) and up-regulation of mesenchymal markers (N-cadherin) and EMT-transcription factor Snail. A significant increase in the androgen receptor mRNA and protein levels was associated with the early onset of prostate tumorigenesis in TRAMP+/DNTGF beta RII mice. Our results indicate that in vivo disruption of TGF-beta signaling accelerates the pathologic malignant changes in the prostate by altering the kinetics of prostate growth and inducing EMT. The study also suggests that a dysfunctional TGF beta RII augments androgen receptor expression and promotes inflammation in early stage tumor growth, thus conferring a significant contribution by TGF-beta to prostate cancer progression. [Cancer Res 2009;69(18):7366-74]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available