4.4 Article

A numerical model study of an intense cutoff low pressure system over South Africa

Journal

MONTHLY WEATHER REVIEW
Volume 135, Issue 3, Pages 1128-1150

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/MWR3311.1

Keywords

-

Ask authors/readers for more resources

Investigations of extreme rainfall events in the southern African region are limited by the paucity of the observational network. Furthermore, the lack of full radar coverage for South Africa makes quantitative precipitation estimation difficult. Therefore, numerical modeling represents the most effective method for improving the understanding of the mechanisms that contribute to extreme rainfall events in this region with the caveat that accurate validation of model simulations is hampered by the limited observations in the region. This paper describes an intense cutoff low event over South Africa that led to record rainfall and flash flooding along the south coast of the country and adjoining hinterland. Analyses from the Global Forecast System model showed that the cutoff aloft was accompanied by a strong low-level jet (LLJ) impinging onto the south coast where rainfall was heaviest, and that lapse rates were steep in the lower troposphere. Simulations of the event were carried out using a numerical model [i.e., the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5)], which showed that severe convection occurred over the ocean on the right-hand side of the LLJ, and at its leading edge where it impinged on the coastal topography. This topography was also very important in providing additional forcing for the ascent of moist air. A factor separation technique was used to show that surface heat fluxes from the warm sea surface temperature (SST) of the Agulhas Current were important in enhancing low-level cyclogenesis, and that topography was important in maintaining the position of the low-level coastal depression, which led to favorable conditions for rainfall remaining in the same area for an extended period of time. It is suggested that improved representation of the tight topographic and SST gradients of the southern African region in NWP models or postprocessing systems would help to provide more accurate forecasts of the amount and location of heavy precipitation during cutoff low events where surface forcing is important.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available