4.5 Review

ALDH3A1: a corneal crystallin with diverse functions

Journal

EXPERIMENTAL EYE RESEARCH
Volume 84, Issue 1, Pages 3-12

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.exer.2006.04.010

Keywords

ALDH3A1; corneal crystallin; oxidative stress; lipid peroxidation; cell growth

Categories

Funding

  1. NEI NIH HHS [R01 EY11490] Funding Source: Medline
  2. NATIONAL EYE INSTITUTE [ZIAEY000259, R01EY011490, Z01EY000259] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Aldehyde dehydrogenase 3A1 (ALDH3A1) comprises a surprisingly high proportion (5-50% depending on species) of the water-soluble protein of the mammalian cornea, but is present little if at all in the cornea of other species. Mounting experimental evidence demonstrates that this abundant corneal protein plays an important role in the protection of ocular structures against oxidative damage. Corneal ALDH3A1 appears to protect against UV-induced oxidative stress through a variety of biological functions Such as the metabolism of toxic aldehydes produced during the peroxidation of cellular lipids, the generation of the antioxidant NADPH, the direct absorption of UV-light, the scavenging of reactive oxygen species (ROS), and the possession of chaperone-like activity. With analogies to the abundant, multifunctional, and taxon-specific lens crystallins, mammalian ALDH3A1 has been considered a corneal crystallin, Suggesting that it may contribute to the optical properties of the cornea as well. Recent studies have also revealed a novel role for ALDH3A1 in the regulation of the cell cycle. ALDH3A1-transfected HCE cells have increased population-doubling time, decreased plating efficiency, and reduced DNA synthesis, most likely due to a profound inhibition of cyclins and cyclin-dependent kinases. We have proposed that the ALDH3A1-induced reduction in cell growth may contribute to protection against oxidative stress by extending time for DNA and cell repair. Taken together, the multiple roles of ALDH3A1 against oxidative stress in addition to its contributions to the optical properties of the cornea are consistent with the idea that this specialized protein performs diverse biological functions as do the lens crystallins. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available